Roll No.:....

328513(28)

APR-MAY ination, 2020

B. E. (Fifth Semester) Examination, 2020

(Old Scheme)

(Et & T Engg. Branch)

ELECTROMAGNETICS WAVES & ANTENNAS

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Part (a) of each question is compulsory.

Attempt any two parts from parts (b), (c)
and (d) of each question. Part (a) is of 2
marks and part (b), (c) and (d) are of 7
marks each.

Unit-I

1. (a) Define Skin depth.

e del Derim Dominut Mades

(b) Write down & explain the integral from of Maxwell equation.

7

	-	
ı	7	
ı	-	

	(c) State and prove Poynting's theorem.	7
	(d) Find the intrinsic impedance η , the propagation	
	constant r and the wave velocity v for a conducting	
	medium in which $\sigma = 58$ Ms/m, $\mu_r = 1$, at a	
	frequency $f = 100 \times 10^6$ Hz.	7
	quarestas fattir	
	Unit-II	
2.	(a) State condition for lossless transmission line.	2
	(b) Define primary constant of a transmission line.	7
	(c) Derive derivation for input impedance of transmission	
	line terminated with any load impedance (Z_R) .	7
	(d) Calculate the characteristic impedance, propagation	
	constant and velocity of propagation at 400 kc/s for	
	a transmission line having $L = 0.6$ mH/km, $C = 0.08$	
	μ f/km and negligible R and G .	7
	Unit-III	
3.	(a) Define Dominant Modes. days to make unfinely trap	2
	(b) Derive derivation for all field component in wave	
	propagation between rectangular waveguide for T.M.	

[3]

(c)	Define wave impedance, cut off wavelength phase				
	velocity and group velocity in wave guidefield.	-			
(d)	The larger dimension of the cross-section of a rectangular waveguide is 2 cm. Find the cut-off frequency and wavelength for the dominant TE mode.	7			
	Unit-IV				
(a)	Define isotropic raditor	2			
(b)	Define antenna gain, antenna efficiency and bandwidth.	7			
(c)	State & prove reciprocity theorem for antenna.	7			
(d)	Explain the radiation from a small current element.	7			
Unit-V					
(a)	Define pattern multiplication.	2			
(b)	Explain Brodside and End fired array.	7			
(c)	Write short note on Rhombic Antenna and Loop				

4.

5.

7

Antenna.

PTO

mode.

1119

(d) Derive derivation for total far field at distance point for array of two point source with equal amplitude and phase.

328513(28)

20]